Generalized Balance Functions

Scott Pratt
Michigan State University

QGP Chemistry Basics

- 52 ~massless degrees of freedom
- Strongly interacting
- Conserved: up-ness, down-ness, strangeness, color
 Not conserved: quark number
- Lattice measures charge fluctuations:

$$\chi_{ab} \equiv \langle Q_a Q_b \rangle / V$$

Parton gas:

$$\chi_{ab}^{QGP} = (n_a + n_{\overline{a}})\delta_{ab}$$
a,b = uds

$$\chi_{ab}^{HAD} = \sum_{\alpha} n_{\alpha} q_{\alpha,a} q_{\alpha,b}$$

$$\alpha = \pi^{+}, \pi^{-}, \pi^{0}, K^{+}...$$

Lattice Charge Fluctuations

scaled by entropy

Parton gas:

$$\chi_{ab}^{\text{QGP}} = (n_a + n_{\overline{a}})\delta_{ab}$$

Hadron gas:

$$\chi_{ab}^{HAD} = \sum_{\alpha} n_{\alpha} q_{\alpha,a} q_{\alpha,b}$$

$$\alpha = \pi^{+}, \pi^{-}, \pi^{0}, K^{+}...$$

off-diagonal elements (V.Koch, PRL 2005)

Two waves of quark production

Problems with Comparing Experiment to Lattice

- I.Lattice = Grand Canonical (Particle Bath)
 Experiment = Canonical (net charge = 0)
- 2. Charge created at hadronization
- 3. One measures hadrons -- not uds
- 4. One measures momenta, not positions

Consider charge correlations $g_{ab}(\Delta \eta)$ is a 3x3 matrix

$$g_{ud}(\Delta \eta) \equiv \langle Q_u(\eta) Q_d(\eta + \Delta \eta) \rangle$$

$$= \langle [n_u(\eta) - n_{\overline{u}}(\eta)] [n_d(\eta + \Delta \eta) - n_{\overline{d}}(\eta + \delta \eta)] \rangle$$

$$\text{charge conservation}$$

$$\int d\Delta \eta \ g_{ab}(\Delta \eta) = 0$$

I. Before hadronization

TQGP/

$$\int d\Delta \eta \ g_{ab}(\Delta \eta) = 0$$
$$g_{ud} = g_{us} = g_{ds} = 0$$

only extra parameter

$$g_{ab}(\Delta \eta) = \chi_{ab}^{(QGP)} \left\{ \delta(\Delta \eta) - \frac{\exp(-\Delta \eta^2 / 2\sigma_{(QGP)}^2)}{(2\pi\sigma_{(QGP)}^2)^{1/2}} \right\}$$

From lattice!

2. Just after hadronization

2nd Bump: Positive or Negative? Crude Expectations

Positive or negative (electric charge)

$$\chi_{\text{electric}}^{(HAD)} = n_{\text{charged}}, \quad \chi_{\text{electric}}^{(QGP)} = \frac{4}{9}n_u + \frac{1}{9}n_d + \frac{1}{9}n_s$$

Narrower bump is same sign, but much taller than wider bump $\pi^+\pi^-$ BF dominated by narrow peak

Before and after (STRANGENESS)

$$\chi_{\text{strange}}^{(HAD)} = n_K + n_\Lambda + 4n_\Xi + 9n_\Omega, \ \chi_{\text{strange}}^{(QGP)} = n_S$$

Smaller bump is very small K⁺K⁻ BF dominated by broad peak

Before and after (BARYON No.)

$$\chi_{\text{baryon}}^{(HAD)} = n_p + n_n + n_\Lambda + n_\Xi + n_\Omega, \quad \chi_{\text{baryon}}^{(QGP)} = \frac{1}{9}(n_u + n_d + n_s)$$

Smaller Bump is smaller with opposite sign p-pbar BF dominated by broad peak, but has dip

STAR results verify this qualitatively

Back to being more exact

Take into account:

- hadrons have multiple charges,
- hyperon decays
- χ has off-diagonal elements...

2. Just after hadronization (uds basis)

$$-g_{ab}^{'}(\Delta\eta) = \chi_{ab}^{(QGP)} \frac{e^{-\Delta\eta^{2}/2\sigma_{(QGP)}^{2}}}{\sqrt{2\pi\sigma_{(QGP)}^{2}}} + (\chi_{ab}^{(HAD)} - \chi_{ab}^{(QGP)}) \frac{e^{-\Delta\eta^{2}/2\sigma_{(HAD)}^{2}}}{\sqrt{2\pi\sigma_{(HAD)}^{2}}}$$

$$\chi_{ab}^{(HAD)} \equiv \sum_{\alpha \in \text{hadrons}} n_{\alpha}q_{\alpha,a}q_{\alpha,b}$$

$$\chi_{ab}^{(QGP)} \equiv 2n_{a}\delta_{ab}$$

3. But, we measure $G_{\alpha\beta}$ not $g_{ab}!!!$ $\alpha,\beta=\pi,p,K...a,b=u,d,s$

$$\begin{split} G_{\alpha\beta}(\Delta\eta) &\equiv \langle [n_{\alpha} - n_{\overline{\alpha}}][n_{\beta} - n_{\overline{\beta}}] \rangle \\ e.g., \quad G_{pK^{-}} &= \langle [n_{p} - n_{\overline{p}}][n_{K^{-}} - n_{K^{+}}] \rangle \end{split}$$

Generalized Balance Function (aside from factor of $\langle n_{\beta} \rangle$)

Analogous problem...

Given $\delta \rho_a$ and n_{α} , find δn_{α}

Solution: assign chemical potential

$$\begin{split} &\delta n_{\alpha} = \left\langle n_{\alpha} \right\rangle \left(e^{\mu_{a} q_{\alpha,a}/T} - 1 \right) \\ &\delta \rho_{a} = \sum_{\alpha} \delta n_{\alpha} q_{\alpha,a} \approx \sum_{\alpha b} \left\langle n_{\alpha} \right\rangle q_{\alpha a} q_{\alpha b} \frac{\mu_{b}}{T} = \sum_{b} \chi_{ab}^{\text{(had)}} \frac{\mu_{b}}{T} \\ &\frac{\mu_{a}}{T} = \sum_{b} (\chi^{-1})_{ab} \delta \rho_{b} \end{split}$$

$$\delta n_{\alpha} = \langle n_{\alpha} \rangle \sum_{b} q_{\alpha a} (\chi^{-1})_{ab} \delta \rho_{b}$$

3. Apply to our problem

$$\left\langle \delta n_{\alpha}(0) \delta n_{\beta}(\Delta \eta) \right\rangle = \left\langle n_{\alpha} \right\rangle \left\langle n_{\beta} \right\rangle \sum_{abcd} q_{\alpha a} \chi_{ac}^{(HAD)-} \left[g_{cd}^{\dagger}(\Delta \eta) \chi_{db}^{(HAD)-1} q_{\beta b} \right]$$

3. Putting this together

$$-G'_{\alpha\beta}(\Delta\eta) = w_{\alpha\beta}^{(QGP)} \frac{e^{-\Delta\eta^{2}/2\sigma_{(QGP)}^{2}}}{\sqrt{2\pi\sigma_{(QGP)}^{2}}} + w_{\alpha\beta}^{(HAD)} \frac{e^{-\Delta\eta^{2}/2\sigma_{(HAD)}^{2}}}{\sqrt{2\pi\sigma_{(HAD)}^{2}}}$$

$$w_{\alpha\beta}^{(QGP)} = -2\sum_{abcd} \langle n_{\alpha} \rangle q_{\alpha,a} \chi_{ab}^{-1(HAD)} \chi_{bc}^{(QGP)} \chi_{cd}^{-1(HAD)} \langle n_{\beta} \rangle q_{\beta,d}$$

$$w_{\alpha\beta}^{(HAD)} = -2\sum_{ab} \langle n_{\alpha} \rangle q_{\alpha,a} \chi_{ab}^{-1(HAD)} \langle n_{\beta} \rangle q_{\beta,b} - w_{\alpha\beta}^{(QGP)}$$

prefactors depend only on yields and χ_{ab} from lattice

3. Prefactors...

	p	Λ	Σ^+	Σ^-	Ξ^0	[E]	Ω^-	π^+	K^+
$ar{p}$	0.441,-0.066	0.485,-0.162	0.491,-0.146	0.479,-0.178	0.535,-0.242	0.529,-0.258	0.578,-0.338	0.006, 0.016	-0.044, 0.096
$\bar{\Lambda}$	0.183,-0.061	0.242, -0.094	0.242,-0.094	0.242,-0.094	0.302,-0.128	0.302,-0.128	0.361,-0.161	0.000,-0.000	-0.059, 0.033
$\bar{\Sigma}^-$	0.074,-0.022	0.097, -0.038	0.099,-0.033	0.095,-0.043	0.122,-0.049	0.120,-0.054	0.144,-0.064	0.002,0.005	-0.023, 0.016
$\bar{\Sigma}^+$	0.072,-0.027	0.097, -0.038	0.095,-0.043	0.099,-0.033	0.120,-0.054	0.122,-0.049	0.144,-0.064	-0.002,-0.005	-0.025, 0.011
$\bar{\Xi}^0$	0.046,-0.021	0.069,-0.029	0.070,-0.028	0.069,-0.031	0.093,-0.036	0.092,-0.038	0.115,-0.045	0.001,0.001	-0.023, 0.008
$\bar{\Xi}^+$	0.046,-0.022	0.069,-0.029	0.069,-0.031	0.070,-0.028	0.092,-0.038	0.093,-0.036	0.115,-0.045	-0.001,-0.001	-0.023, 0.007
$\bar{\Omega}^+$	0.009,-0.005	0.015, -0.007	0.015,-0.007	0.015,-0.007	0.021,-0.008	0.021,-0.008	0.027,-0.009	-0.000,-0.000	-0.006, 0.001
π^{-1}	0.119, 0.318	0.000, -0.000	0.239, 0.636	-0.239,-0.636	0.119, 0.318	-0.119,-0.318	-0.000,-0.000	0.239, 0.636	0.119, 0.318
K^{-}	-0.175, 0.384	-0.627, 0.352	-0.603, 0.417	-0.651, 0.288	-1.055, 0.385	-1.079, 0.321	-1.507, 0.354	0.024, 0.064	0.452, 0.031

(QGP,HAD)

prefactors completely determined by XQGP and final-state hadronic yields

(hadron yields from thermal model with B-reduction)

4. Use blast-wave to go from coordinate space η to momentum-space rapidity (Monte Carlo + decays)
 Use STAR parameters fit to spectra (T and u_⊥)

I. (quarks in QGP / hadrons in FS)

4 Parameters:

2. s/(ud) in QGP

3. σ_{qgp}

4. Thad

from STAR
(balance
functions)
thesis of Hui Wang (2012)

Single source
won't work
KK broader than
ππ!
pp̄ broader than
both
-- and has dip!!

4 Parameter MCMC

$$0.3 < \sigma_{qgp} < 1.5$$
 $0 < \sigma_{had}/\sigma_{qgp} < 1$
 $0.75 < \frac{quark}{hadron} < 2$
 $0 < \frac{s}{ud} < 1$

Charge Balance Functions (STAR)

MCMC Results

MCMC Results

- $\sigma_{\rm qgp} \approx 0.9$
- $\sigma_{had} \approx 0.25$
- ud/hadron and s/ud ratios consistent with equilibrated QGP

Conclusions

- STAR results validate 2-wave picture
- uds densities of QGP appear close to lattice values

To-Do List: (Experiment)

- Other charge combinations, e.g. pK
- σ_φ vs σ_η
- B(Q_{out},Q_{side},Q_{long}) binned by k_t, reaction plane
- pp, pA collisions

To-Do List: (Theory)

Continuous creation/annihilation

$$g'_{ab}(x_1, x_2) = \int_0^{\tau} d^4 x' D_a(x', x_1) D_b(x', x_2) \frac{d(\chi_{ab}/s)}{d\tau'}(x')$$

- non-zero baryon density
- pp/e⁺e⁻ collisions need theory
- How do quarks arise from gluons/string/fluxtubes?